146 lines
4.3 KiB
Python
146 lines
4.3 KiB
Python
import pickle
|
|
from io import BytesIO
|
|
|
|
from app import BOT, Convo, Message, bot
|
|
from app.plugins.ai.models import get_response_text, run_basic_check
|
|
from pyrogram import filters
|
|
from pyrogram.enums import ParseMode
|
|
|
|
CONVO_CACHE: dict[str, Convo] = {}
|
|
|
|
|
|
@bot.add_cmd(cmd="ai")
|
|
@run_basic_check
|
|
async def question(bot: BOT, message: Message):
|
|
"""
|
|
CMD: AI
|
|
INFO: Ask a question to Gemini AI.
|
|
USAGE: .ai what is the meaning of life.
|
|
"""
|
|
|
|
prompt = message.input
|
|
|
|
response = await TEXT_MODEL.generate_content_async(prompt)
|
|
|
|
response_text = get_response_text(response)
|
|
|
|
if not isinstance(message, Message):
|
|
await message.edit(
|
|
text=f"```\n{prompt}```**GEMINI AI**:\n{response_text.strip()}",
|
|
parse_mode=ParseMode.MARKDOWN,
|
|
)
|
|
else:
|
|
await bot.send_message(
|
|
chat_id=message.chat.id,
|
|
text=f"```\n{prompt}```**GEMINI AI**:\n{response_text.strip()}",
|
|
parse_mode=ParseMode.MARKDOWN,
|
|
reply_to_message_id=message.reply_id or message.id,
|
|
)
|
|
|
|
|
|
@bot.add_cmd(cmd="aichat")
|
|
@run_basic_check
|
|
async def ai_chat(bot: BOT, message: Message):
|
|
"""
|
|
CMD: AICHAT
|
|
INFO: Have a Conversation with Gemini AI.
|
|
USAGE:
|
|
.aichat hello
|
|
keep replying to AI responses
|
|
After 5 mins of Idle bot will export history and stop chat.
|
|
use .load_history to continue
|
|
"""
|
|
chat = TEXT_MODEL.start_chat(history=[])
|
|
await do_convo(chat=chat, message=message)
|
|
|
|
|
|
@bot.add_cmd(cmd="load_history")
|
|
@run_basic_check
|
|
async def history_chat(bot: BOT, message: Message):
|
|
"""
|
|
CMD: LOAD_HISTORY
|
|
INFO: Load a Conversation with Gemini AI from previous session.
|
|
USAGE:
|
|
.load_history {question} [reply to history document]
|
|
"""
|
|
reply = message.replied
|
|
|
|
if (
|
|
not reply
|
|
or not reply.document
|
|
or not reply.document.file_name
|
|
or reply.document.file_name != "AI_Chat_History.pkl"
|
|
):
|
|
await message.reply("Reply to a Valid History file.")
|
|
return
|
|
|
|
resp = await message.reply("<i>Loading History...</i>")
|
|
doc: BytesIO = (await reply.download(in_memory=True)).getbuffer() # NOQA
|
|
history = pickle.loads(doc)
|
|
await resp.edit("<i>History Loaded... Resuming chat</i>")
|
|
chat = TEXT_MODEL.start_chat(history=history)
|
|
await do_convo(chat=chat, message=message)
|
|
|
|
|
|
async def do_convo(chat, message: Message):
|
|
prompt = message.input
|
|
reply_to_message_id = message.id
|
|
|
|
old_convo = CONVO_CACHE.get(message.unique_chat_user_id)
|
|
|
|
if old_convo:
|
|
Convo.CONVO_DICT[message.chat.id].remove(old_convo)
|
|
|
|
convo_obj = Convo(
|
|
client=message._client,
|
|
chat_id=message.chat.id,
|
|
filters=generate_filter(message),
|
|
timeout=300,
|
|
check_for_duplicates=False,
|
|
)
|
|
|
|
CONVO_CACHE[message.unique_chat_user_id] = convo_obj
|
|
|
|
try:
|
|
async with convo_obj:
|
|
while True:
|
|
ai_response = await chat.send_message_async(prompt)
|
|
ai_response_text = get_response_text(ai_response)
|
|
text = f"**GEMINI AI**:\n\n{ai_response_text}"
|
|
_, prompt_message = await convo_obj.send_message(
|
|
text=text,
|
|
reply_to_message_id=reply_to_message_id,
|
|
parse_mode=ParseMode.MARKDOWN,
|
|
get_response=True,
|
|
)
|
|
prompt, reply_to_message_id = prompt_message.text, prompt_message.id
|
|
except TimeoutError:
|
|
await export_history(chat, message)
|
|
|
|
CONVO_CACHE.pop(message.unique_chat_user_id, 0)
|
|
|
|
|
|
def generate_filter(message: Message):
|
|
async def _filter(_, __, msg: Message):
|
|
if (
|
|
not msg.text
|
|
or not msg.from_user
|
|
or msg.from_user.id != message.from_user.id
|
|
or not msg.reply_to_message
|
|
or not msg.reply_to_message.from_user
|
|
or msg.reply_to_message.from_user.id != message._client.me.id
|
|
):
|
|
return False
|
|
return True
|
|
|
|
return filters.create(_filter)
|
|
|
|
|
|
async def export_history(chat, message: Message):
|
|
doc = BytesIO(pickle.dumps(chat.history))
|
|
doc.name = "AI_Chat_History.pkl"
|
|
caption = get_response_text(
|
|
await chat.send_message_async("Summarize our Conversation into one line.")
|
|
)
|
|
await bot.send_document(chat_id=message.from_user.id, document=doc, caption=caption)
|